Internal resistance practice questions

1. The power system of a spacecraft must provide a constant 28.0 V for the equipment on board, independent of the current supplied.

This can be achieved using two separate power supplies A and B connected in the series as shown in the diagram below.

Power supply A has an e.m.f. of 20.0 V and an internal resistance of 0.40 Ω .

Power supply B provides a variable voltage and has negligible internal resistance. Its voltage varies automatically to maintain the constant 28.0 V.

Explai	in carefully why the voltage output of B must increase as the current supplied rises.	
		(2)
When	the current is 10.0 A,	
(i)	show that the voltage output of B is 12.0 V	
		(2)

(ii)	calculate the power supplied to the equipment on board.	
	Power supplied =	(1)
(iii)	calculate the power wasted in heating the internal resistance.	
	Power wasted =	(1)
(iv)	calculate the efficiency of the power system.	
	Efficiency =	(2)
Many their	y spacecraft are fitted with solar cells. Give one advantage and one disadvantage of use.	
Adva	antage	
Disad	dvantage	
	(Total	(2) 10 marks)

2. Melanie is using a spreadsheet to model the behaviour of the circuit shown below.

	A	В	C	D	E	F
1	Calculation	s for a Batter	y Delivering	Power		
2						
3	e.m.f.	internal resistance	load resistor	current	p.d. across load	power in load
4	E	r	R	I	V	P
5	(volts)	(ohms)	(ohms)	(amps)	(volts)	(watts)
6						
7	12.0	2.00	0.00	6.00	0.00	0.0
8	12.0	2.00	0.50	4.80	2.40	11.5
9	12.0	2.00	1.00	4.00	4.00	16.0
10	12.0	2.00	1.50	3.43	5.14	17.6
11	12.0	2.00	2.00	3.00	6.00	18.0
12	12.0	2.00	2.50	2.67	6.67	17.8
13	12.0	2.00	3.00	2.40	7.20	17.3
14	12.0	2.00	3.50	2.18	7.64	16.7
15	12.0	2.00	4.00	2.00	8.00	16.0

To calculate a value for cell D7, Melanie entered this formula:

$$= A7/(B7 + C7)$$

Explain why this is correct.	
	(1)
What would be an appropriate formula for cell E9?	
	(1)

What would be an appropriate formula for cell F11?	
What is the short-circuit current obtainable from this battery?	(1)
·	
Explain why the p.d. across the load resistor increases as the current falls.	(1)
	(2)
Sketch a graph on the axes below to show how the power in the load would vary for load resistors in the range 0–9 Ω (marking values where appropriate).	
P/W	
R/Ω	(3)
Comment on <i>one</i> key feature of the graph.	
(То	(2) stal 11 marks)

3. A student read that a lemon could be used to power a clock. He made an electrical cell using a lemon and placed it in this circuit. The table shows the readings he obtained. The first reading was taken with switch S open. To obtain the others he closed S and varied the resistance R.

Reading	Current/nA	Voltage/mV
1	0	110
2	90	83
3	150	74
4	210	57
5	310	35
6	350	20

The prefix n, as in nA, means " \times 10-9".	
What does the prefix m, as in mV, mean?	
	(1)
Calculate the value of <i>R</i> for reading 3.	(1)
Resistance =	(2)
Calculate the power being supplied by the cell to resistance R for reading 4.	
D	

(2)

The student plotted his results on a graph like the one shown. Points for readings 4, 5 and 6 have already been plotted. Complete the graph.

Predict the current that would flow from the cell if it were short-circuited, that is, if <i>R</i> we reduced to zero.	
State what the experiment suggests for the value of the e.m.f. of the cell.	(1)
Explain why the voltage across the cell falls as R is reduced.	. (1)
	(2) Fotal 12 marks)

4. A student models a stage lighting system using a circuit-drawing computer package and a spreadsheet. He starts with a power supply of e.m.f. 120 V, and internal resistance 15 Ω . He assumes that each lamp has fixed resistance 60 Ω . He is interested in the effect of turning on the lamps one at a time, so that the number of lamps switched on increases from one to six. His circuit and part of his spreadsheet are shown below.

	А	В	С	D	Е
1	Number of lamps switched on	Net resistance of lamps/Ω	Total current from supply/A	p.d. across lamps/V	Power to all lamps/W
2					
3	1	60	1.6	96	154
4	2	30	2.7	80	213
5	3	20	3.4	69	235
6	4	15	4.0	60	240
7	5	12	4.4	53	
8	6	10	4.8	48	230

The student has assumed that the voltmeter would have no effect on any of the values he has
calculated. Explain why this is an appropriate assumption.

(1)

When 6 lamps are on (row 8), how much current flows through lamp X?	
Current through X =	(1
Calculate the value missing from cell E7.	· ·
Value =	(1
The lamp marked X is the first to be switched on. Explain how lamp X would appear as successive lamps are switched on.	
What would be a suitable formula for calculating cell C6?	(3
Comment on how the internal resistance of the power supply affects the way in which the value of column E vary.	(2 ues
n Column E vary.	
(Total	(2 10 marks